Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes.

نویسندگان

  • Yun Jung Lee
  • Hyunjung Yi
  • Woo-Jae Kim
  • Kisuk Kang
  • Dong Soo Yun
  • Michael S Strano
  • Gerbrand Ceder
  • Angela M Belcher
چکیده

Development of materials that deliver more energy at high rates is important for high-power applications, including portable electronic devices and hybrid electric vehicles. For lithium-ion (Li+) batteries, reducing material dimensions can boost Li+ ion and electron transfer in nanostructured electrodes. By manipulating two genes, we equipped viruses with peptide groups having affinity for single-walled carbon nanotubes (SWNTs) on one end and peptides capable of nucleating amorphous iron phosphate(a-FePO4) fused to the viral major coat protein. The virus clone with the greatest affinity toward SWNTs enabled power performance of a-FePO4 comparable to that of crystalline lithium iron phosphate (c-LiFePO4) and showed excellent capacity retention upon cycling at 1C. This environmentally benign low-temperature biological scaffold could facilitate fabrication of electrodes from materials previously excluded because of extremely low electronic conductivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

Voltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic

  In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...

متن کامل

Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation

Lithium ion batteries have been one of the major power supplies for small electronic devices since the last century. However, with the rapid advancement of electronics and the increasing demand for clean sustainable energy, newer lithium ion batteries with higher energy density, higher power density, and better cyclic stability are needed. In addition, newer generations of lithium ion batteries...

متن کامل

High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium i...

متن کامل

Graphene sheets stabilized on genetically engineered M13 viral templates as conducting frameworks for hybrid energy-storage materials.

Utilization of the material-specific peptide-substrate interactions of M13 virus broadens colloidal stability window of graphene. The homogeneous distribution of graphene is maintained in weak acids and increased ionic strengths by complexing with virus. This graphene/virus conducting template is utilized in the synthesis of energy-storage materials to increase the conductivity of the composite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 324 5930  شماره 

صفحات  -

تاریخ انتشار 2009